

XIV School on Synchrotron Radiation: Fundamentals, Methods and Applications

Muggia, Italy / 18-29 September 2017

Luigi Paolasini European Synchrotron Radiation Facility paolasini@esrf.eu

OUTLINES

- 1. Magnetism and magnetic structures
- 2. Theory of x-ray magnetic and resonant scattering
- 3. Experimental methods: polarized x-rays
- 4. Non-resonant magnetic scattering
- 5. Resonant x-ray scattering and high order multipoles
- 6. Resonant inelastic scattering

Books:

- Jens Als-Nielsen and Des McMorrow, "Elements of Modern X-ray Physics", Second edition, John Wiley & Sons, Ltd Publication, (2011).

- "Synchrotron Radiation: Basics, Methods and Applications", Ed. Mobilio, Boschierini, Meneghini, Springer-Heidelberg 2015.

Articles:

- M. Blume, *"Resonant anomalous x-ray scattering"*, ed. G. Materlik, (1994), p. 494-512, Elsevier Science B.V., Amsterdam. *(Theory)*
- Paolasini and de Bergevin, CR Physique 9 550 (2008) (*nRMXS and REXS*)
- Di Matteo, J. Phys. D: Appl. Phys. 45 163001 (2012) (REXS and High order multipoles)
- Ament et al., Rev. Mod. Phys. 83, 705 (2011) (RIXS)

INGREDIENTS FOR MAGNETISM

Intra atomic magnetic properties

Isolated single ion Open shell (magnetic elements) Fine structure ex. Rare Earth compounds

Crystal electric field perturbs the atomic magnetism

Coulomb repulsion vs hopping transfer Breaking of Hund rules Quenching of orbital momentum Magnetic anisotropy ex. Transition metal oxides

Inter atomic magnetic interactions induce long range order

Isotropic exchange H=J **S**'S (Heisenberg) Anisotropic exchange H=**S** <u>J</u> **S** (Dzyaloshinsky-Moriya) Super-exchange and double-exchange Itinerant exchange (RKKY)

ELASTIC DIFFRACTION IN CRYSTALS

Interference between the resultatant waves diffused from each atom in the unit cell for any given reciprocal lattice vector $\mathbf{Q} = \mathbf{G}_{hkl}$

Differential cross section:

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{Bragg} = N \frac{(2\pi)^3}{v_0} \sum_{hkl} \delta(\mathbf{Q} - \mathbf{G}_{hkl}) |F(hkl)|^2$$

$$N^{\circ} \text{ unit cell} \quad \text{unit cell volume} \quad \text{Laue's condition}$$

$$F(hkl) = \sum_{kl} f_s e^{i\mathbf{G}_{hkl} \cdot \mathbf{d}_s - W_s} \quad \begin{array}{l} \text{Structure factor: information} \\ \text{atom distribution inside the set} \\ \end{array}$$

ation about the atom distribution inside the unit cell

$$f_s = \int_{atom} \rho_s(\mathbf{r}') e^{-i\mathbf{Q}\cdot\mathbf{r}'} d\mathbf{r}'$$

atomic scattering amplitude for the atoms s related to the Fourier transform of the atomic *electron density*

DESCRIPTION OF A MAGNETIC STRUCTURE

The magnetic propagation vector \mathbf{q}_{m} describes the periodicity of a magnetic structures

Definition:

- \mathbf{q}_m is a reciprocal lattice vector
- \mathbf{q}_m is a eigenfunction of the Translational Group
- It is defined inside the 1st Brillouin zone
- Perpendicular to the planes containing atoms with the same orientation of the magnetic moments
- The inverse of its modulus is equal to magnetic

periodicity (Ex. $2\pi/q_m=2a$)

The **magnetic propagation** vector gives no information on the orientation of the magnetic moments

MAGNETIC MOMENT DISTRIBUTION

The magnetic moment distribution m_{ns} gives information about the magnetic moment direction of the s-atom inside the nth-lattice cell

 m_{ns} is a REAL vector defined in the direct space

- The fase factor is real ONLY if q_m correspond to the 1st Brillouin surface

(i.e. for ferro and antiferromagnetics)

- In general the for any q_m the sum must include $-q_m$ such that :

$$\mathbf{m}_{ns} = \mathbf{m}_{s}^{\mathbf{q}_{m}} e^{-i\mathbf{q}_{m}\cdot\mathbf{R}_{n}} + \mathbf{m}_{s}^{-\mathbf{q}_{m}} e^{i\mathbf{q}_{m}\cdot\mathbf{R}_{n}} = 2 |\mathbf{m}_{s}^{\mathbf{q}_{m}}| \hat{\mathbf{u}} \cos(\mathbf{q}_{m}\cdot\mathbf{R}_{n} + \phi)$$

EX : FERROMAGNETIC $q_m = (000)$

- All the magnetic moment m_i are parallel each others
- The magnetic and the chemical unit cells coincide
- Structural and magnetic reflections coincide

EX : **ANTIFERROMAGNETIC** $q_m = (\frac{1}{2}, \frac{1}{2}, 0)$

- Adjacent planes contain antiparallel magnetic moment m_i
- Magnetic cell multiple of the chemical unit cell (double)
- Magnetic reflections correspond to the symmetry points at the surface of the Brillouin zone

The European Synchrotron | ESRF

EX : HELICAL $q_m = (0, 0, 1/3)$

- Propagation vector \mathbf{q}_m have a non-integral periodicity - In general both \mathbf{q}_m and $-\mathbf{q}_m$ exists (indicated τ^+ and τ^-) The propagation vector \mathbf{q}_m inside the 1st Brillouin zone

 $\mathbf{q}_{m} = (0,0,1/3)$ $\mathbf{m}_{ns} = m_{0} [\cos(\mathbf{q}_{m} \cdot \mathbf{R}_{n} + \phi)\mathbf{u}_{s} + \sin(\mathbf{q}_{m} \cdot \mathbf{R}_{n} + \phi)\mathbf{v}_{s}]$

MODULATED STRUCTURES

Non-collinear incommensurate magnetic modulations

The European Synchrotron | ESRF

ELECTRONIC GROUND STATE PROPERTIES

X-RAYS PROPERTIES

Intrinsic properties

- Wave-Like and particle-like properties
- Rest mass: m_{ph} = 0
- Charge = 0
- Spin = 1
- Magnetic moment: μ_{ph} =0
- Polarization ϵ // Electric field E

X-rays are electromagnetic waves and interact with the the electric **E** and the magnetic field **B** generated by the electrons

The electric **E** and magnetic **B** in term of scalar Φ and vector **A** potential

Energy \mathcal{E} [keV] = $\hbar\omega$ =hc/ λ = 12.398 / λ [Å]

Spectral intensity $I_0(\omega) = \langle E_0^2 \rangle = N(\omega) \hbar \omega$

X-RAY-MATTER INTERACTIONS

Photon absorption : Photon scattering : Excitation with or without emission of electrons Elastic => Thomson and magnetic

Inelastic Resonant

- => Compton (Raman)
- => elastic or inelastic

X-RAYS CROSS SECTIONS

X-RAY SCATTERING BY FREE ELECTRONS

- The electron are at rest
- The electric field E_{in} of the incident x-rays act as a force **F**=**E**q
- The electron accelerates and radiates a spherical wave E_{rad}

Istantanous radiated spherical field $\mathsf{E}_{\mathsf{rad}}$:

- proportional to the electron acceleration
- anti-phase with respect E_{in}
- decreases with $cos(\psi)$

$$\frac{\mathbf{E}_{\mathrm{rad}}(R,t)}{\mathbf{E}_{\mathrm{in}}} = -\left(\frac{e^2}{4\pi\epsilon_0 mc^2}\right)\frac{\mathrm{e}^{i\mathbf{k}R}}{R}\cos\psi$$

Thomson scattering length (Lorentz radius):

$$r_0 = \left(\frac{e^2}{4\pi\epsilon_0 mc^2}\right) = 2.82\times 10^{-5} \text{ \AA}$$

m = electron mass e = electron charge

POLARIZATION DEPENDENCE OF X-RAYS

The differential cross section for the Thomson scattering depends from the incident and scattered photon polarizations

$$\left(\frac{d\sigma}{d\Omega}\right) = r_0^2 \left|\hat{\boldsymbol{\varepsilon}} \cdot \hat{\boldsymbol{\varepsilon}}'\right|^2 \quad P = \left|\hat{\boldsymbol{\varepsilon}} \cdot \hat{\boldsymbol{\varepsilon}}'\right|^2 = \begin{cases} 1 & \text{synchrotron: vertical scattering plane} \\ \cos^2 \psi & \text{synchrotron: horizontal scattering plane} \\ \frac{1}{2}\left(1 + \cos^2 \psi\right) & \text{unpolarized source} \end{cases}$$

X-RAY MAGNETIC SCATTERING

The magnetic interaction is a relativistic correction to the Thomson scattering

Page 18 Muggia 26 Sept. 2017

The European Synchrotron | ESRF

SCATTERING FROM BOUND ELECTRONS

The bound electron is subject to the electric field E_{in} of an incident X-ray beam and to a damping term proportional to the electron velocity $\Gamma \dot{x}$ which represents dissipation of energy.

ESRF

The European Synchrotron

DISPERSION CORRECTIONS

Because the electrons are bound in atoms with discrete energies, a more elaborate model than that of a cloud of free electrons must be invoked.

The scattering amplitude includes two energy dependent term $f'(\omega)$ and $f''(\omega)$ which are called "dispersion corrections".

$$f(\mathbf{Q}, \omega) = f^{0}(\mathbf{Q}) + f'(\omega) + i f''(\omega)$$

The dispersion corrections are derived by treating atomic electrons as harmonic oscillators. The absorption cross section σ_a is a superposition of oscillators with relative weights, so-called oscillator strengths, $g(\omega_s)$, proportional to $\sigma_a(\omega = \omega_s)$.

QUANTUM DESCRIPTION OF MATTER

Matter is described by a wavefunction Ψ solution of **Schrodinger equation**:

 $H \Psi = E \Psi$ r_i electron positions R_i Nuclei positions

1) Born-Oppenheimer approximation:

Nuclei at the rest position R_i⁰

An effective Hamiltonian $\mathrm{H}_{\mathrm{eff}}$ describes the attractive potential of ions on the electrons

2) Mean field approximation:

Electrons move independently in the mean field created by the other electrons No electron correlation effects and Ψ depends only from \mathbf{r}_i

3) One electron approximation:

The wavefunction of the electron \mathbf{r}_{n} can be single out

The effective Hamiltonian depends only from the coordinate of this electron

$$\Psi(r_1, r_2, \dots, r_n; R_1^0, R_2^0, \dots, R_N^0) \sim \Psi(r_1, r_2, \dots, r_{n-1}; R_1^0, R_2^0, \dots, R_N^0) \psi(r_n)$$

$$H_{eff}(\mathbf{r}_n) \psi(r_n) = E \psi(r_n)$$

QUANTUM DESCRIPTION OF X-RAYS

Quantization of the electromagnetic field

The "second quantization" describes the EM field as photon states with an occupation number "n", wavevector **k** and polarization " ϵ ",

 $|n_{k_1,\epsilon_1};...n_{k,\epsilon};...n_{k_t,\epsilon_t}\rangle$

and the **creation** and **annihilation** operators, " a^{\dagger} " and "a" defined as:

$$\begin{aligned} a_{k,\epsilon}^{\dagger} | n_{k_1,\epsilon_1}; \dots n_{k,\epsilon}; \dots n_{k_t,\epsilon_t} \rangle &= \sqrt{n_{k,\epsilon} + 1} | n_{k_1,\epsilon_1}; \dots n_{k,\epsilon} + 1; \dots n_{k_t,\epsilon_t} \rangle \\ a_{k,\epsilon} | n_{k_1,\epsilon_1}; \dots n_{k,\epsilon}; \dots n_{k_t,\epsilon_t} \rangle &= \sqrt{n_{k,\epsilon}} | n_{k_1,\epsilon_1}; \dots n_{k,\epsilon} - 1; \dots n_{k_t,\epsilon_t} \rangle \end{aligned}$$

With this assumptions, the harmonic components of an EM field is decomposed in a sum of quantized oscillators. The vector potential **A** then became an operator:

$$\mathbf{A}(\mathbf{r},t) = \sum_{k,\epsilon} \sqrt{\frac{4\pi\hbar c^2}{2V\omega_k}} \left(a_{k,\epsilon} \hat{\epsilon}_{k,\epsilon} e^{i\mathbf{k}\cdot\mathbf{r}-i\omega t} + a_{k,\epsilon}^{\dagger} \hat{\epsilon}_{k,\epsilon}^* e^{-i\mathbf{k}\cdot\mathbf{r}-i\omega t} \right)$$

THEORY X-RAYS MATTER INTERACTION

Interaction occurs mainly with the electrons we considers only the electronic transitions we suppose to know their eigenstates and the eigenfunctions The system is composed by N identical microscopic entities Atoms, molecules, clusters ... The electromagnetic wave acts as a time-dependent perturbation modify the electron wavefunction

transitions between eigenstates

FERMI GOLDEN RULE (second order)

Transition rate W_{fi} per unit of volume between an initial $|\Psi_i\rangle$ and a final $\langle\Psi_f|$ unperturbed eigenstate

$$W_{fi} = \frac{2\pi}{\hbar} \left| \langle \Psi_f | H_{int} | \Psi_i \rangle + \sum_k \frac{\langle \Psi_f | H_{int} | \Psi_k \rangle \langle \Psi_k | H_{int} | \Psi_i \rangle}{E_i - E_k - \hbar \omega} \right|^2 \delta(E_f - E_i - \hbar \omega)$$

The interaction Hamiltonian ${\rm H}_{\rm int}$ describes the relativistic behaviour of electrons in an electromagnetic field

RELATIVISTIC INTERACTIONS

The interaction Hamiltonian is obtained from the **Dirac equation** in the limit of low velocities and taking the terms o(v/c).

$$\hat{H}_{int} = \sum_{j} \left(-\frac{e}{mc} \mathbf{A}(\mathbf{r}_{j}) \cdot \mathbf{p}_{j} + \frac{e^{2}}{2mc^{2}} \mathbf{A}^{2}(\mathbf{r}_{j}) - \frac{e\hbar}{mc} \mathbf{s}_{j} \cdot \nabla \times \mathbf{A} - \frac{e\hbar}{2m^{2}c^{3}} \mathbf{s}_{j} \cdot \frac{\partial \mathbf{A}}{\partial t} \times \frac{e}{c} \mathbf{A} \right)$$

Zeeman term:
Interaction of electron spins \mathbf{s}_{j}
with the magnetic field **H**

Spin orbit interaction:
interaction between the spin **S** and the orbital
part **L** of the electron's wave functions

$$H_{so} = -\frac{1}{2} \mu \cdot \mathbf{B}^{p} = \frac{e\hbar^{2}}{2m_{e}c^{2}r} \frac{dV(r)}{dr} \mathbf{L} \cdot \mathbf{S} = \lambda \mathbf{L} \cdot \mathbf{S}$$

RELATIVISTIC SCATTERING THEORY

For a complete description of the x-ray-matter interaction we need to consider the relativistic motion of the electrons in a quantized electromagnetic field.

Non-interacting electrons H_{el}

$$\mathcal{H}_{el} = \sum_{j} \frac{1}{2m} \mathbf{P}_{j}^{2} + \sum_{ij} V(r_{ij}) + \frac{e\hbar}{2(mc)^{2}} \sum_{j} \mathbf{s}_{j} \cdot (\nabla \Phi_{j} \times \mathbf{P}_{j}),$$

Non-interacting photons H_{ph}

$$H_{phot} = \sum_{\mathbf{k},\epsilon} \hbar \omega (a_{k,\epsilon}^{\dagger} a_{k,\epsilon} + \frac{1}{2})$$

Interaction term H'

$$\begin{aligned} \mathcal{H}' &= \mathcal{H}'_{1} + \mathcal{H}'_{2} + \mathcal{H}'_{3} + \mathcal{H}'_{4} \\ &= \frac{e^{2}}{2mc^{2}} \sum_{j} \mathbf{A}^{2}(\mathbf{r}_{j}) \\ &- \frac{e}{mc} \sum_{j} \mathbf{A}(\mathbf{r}_{j}) \cdot \mathbf{P}_{j} \\ &- \frac{e\hbar}{mc} \sum_{j} \mathbf{s}_{j} \cdot [\nabla \times \mathbf{A}(\mathbf{r}_{j})] \\ &- \frac{e\hbar}{2(mc)^{2}} \frac{e}{c^{2}} \sum_{j} \mathbf{s}_{j} \cdot [\dot{\mathbf{A}}(\mathbf{r}_{j}) \times \mathbf{A}(\mathbf{r}_{j})]. \end{aligned}$$

Spatial part of vector potential

$$\mathbf{A}(\mathbf{r}_j) = \hat{\epsilon} \sqrt{\frac{\hbar}{2\epsilon_0 V \omega}} \left[a_{k,s} e^{i\mathbf{k}\cdot\mathbf{r}_j} + a_{k,s}^{\dagger} e^{-i\mathbf{k}\cdot\mathbf{r}_j} \right]$$

ELASTIC SCATTERING PROCESSES

- Absorption processes => retain only the photon annihilation operator $a_{k,s}$ linear terms in the **A**
- Scattering processes => involve both the photon operators a_{ks}^{\dagger} and a_{ks}^{\dagger} quadratic terms A^2

Elastic scattering processes conserves the number of photons.

- 1st order perturbation: QUADRATIC terms in A(r) (H'_1 and H'_4)
- 2nd order perturbation: LINEAR terms in A(r) (H²₂ and H²₃)

Fermi's Golden rule:

$$\begin{split} W &= \frac{2\pi}{\hbar} \mid < a \; ; \; \mathbf{k}' \; \epsilon' \mid H_1' + H_4' \mid a \; ; \; \mathbf{k} \; \epsilon > \longleftarrow \quad \mathbf{1}^{\mathsf{st}} \; \mathsf{order} \\ &+ \left. \sum_n \frac{< a \; ; \; \mathbf{k}' \; \epsilon' \mid H_2' + H_3' \; |n > < n| \; H_2' + H_3' \; |a \; ; \; \mathbf{k} \; \epsilon > \right|^2 \longleftarrow \; \mathbf{2}^{\mathsf{nd}} \; \mathsf{order} \\ &= \left| a ; \mathbf{k}, \epsilon \right\rangle, \; \left| f \right\rangle = \left| b ; \mathbf{k}', \epsilon' \right\rangle \end{split}$$

X-RAYS SCATTERING AMPLITUDES

X-RAYS ELASTIC SCATTERING CROSS SECTIONS

Coherent elastic scattering cross-section for periodic crystals

ESRF

The European Synchrotron

X-RAYS SCATTERING INTENSITIES

High-Q quality samples are required to detect the weak magnetic reflections

Page 29 Muggia 26 Sept. 2017

NON RESONANT X-RAYS MAGNETIC SCATTERING

The high-Q resolution allow the separation of crystallographic and magnetic reflections.

Ex. Charge and antiferromagnetic Bragg reflections in $Ce_{0.93}Co_{0.07}Fe_2$

Thomson scattering

Non-resonant magnetic scattering

POLARIZED X-RAYS

X-rays Polarization analyser

- Thomson selection rules (ϵ · ϵ ')
- Bragg diffraction by a crystal analyzer $2\theta_p \sim 90^\circ$
- η = rotation about scattered wavevector k'

Phase plate retarder

Phase shift $\Delta \alpha$ between the transmitted and incident beam in the dynamical diffraction limit

$$\Delta \alpha = \frac{2\pi}{\lambda} (n_{\sigma} - n_{\pi})d = -\frac{\pi}{2} \left[\frac{r_e^2 \lambda^3 Re(F_h F_{\bar{h}}) sin 2\theta_{pp}}{\pi^2 V^2 \Delta \theta_{pp}} \right] d$$

Half wave plate mode ($\Delta \alpha = \pi$) - Rotation of 90° of liner polarization (when $\chi = 45^{\circ}$)

Quarter wave plate mode ($\Delta \alpha = \pi/2$) -Circular left/right polarizations (~98-99%)

Linear Polarization Scan ($\Delta \alpha = \pi$) -Continous rotation of χ

TYPICAL BEAMLINE FOR REXS (EX ID20-ESRF)

Paolasini, et al. J. Synchrotron Rad. 14 (2007) 301-312.

Azimuthal diffractometer

Normal beam diffractometer

POLARIZATION DEPENDENCE OF nRMXS AMPLITUDES

$$f^{magn.}(\mathbf{Q}) = -i \frac{\hbar \omega_k}{mc^2} \left(\mathbf{L}(\mathbf{Q}) \cdot \mathbf{P}_L + \mathbf{S}(\mathbf{Q}) \cdot \mathbf{P}_S \right)$$

• Jones's matrices for nRMXS:

$$f_{mag}^{non-res} = -i \frac{\hbar\omega}{mc^2} \begin{pmatrix} \sigma - \sigma' & \pi - \sigma' \\ M_{\sigma\sigma} & M_{\pi\sigma} \\ M_{\sigma\pi} & M_{\pi\pi} \\ \sigma - \pi' & \pi - \pi' \end{pmatrix}$$

$$\begin{split} M_{\sigma\sigma} &= S_2 \sin 2\theta \\ M_{\pi\sigma} &= -2 \sin^2 \theta \left[(\cos \theta) \left(L_1 + S_1 \right) - S_3 \sin \theta \right] \\ M_{\sigma\pi} &= 2 \sin^2 \theta \left[\cos \theta \left(L_1 + S_1 \right) + S_3 \sin \theta \right] \\ M_{\sigma\pi} &= \sin 2\theta \left[2L_2 \sin^2 \theta + S_2 \right] \\ M_{\pi\pi} &= \sin 2\theta \left[2L_2 \sin^2 \theta + S_2 \right] \\ S_i &= \frac{f_s(Q) \mu_s^i}{g_s \mu_B} \\ L_i &= \frac{f_l(Q) \mu_l^i}{g_l \mu_B} \end{split}$$
Fourier components of spin and orbital magnetization densities

Page 33 Muggia 26 Sept. 2017

AZIMUTHAL LINEAR POLARIMETRY

Page 34 Muggia 26 Sept. 2017

The European Synchrotron | ESRF

SPIN-ORBIT RATIO IN TRANSITION METAL OXIDES

W. Neubeck at al. J. Phys Chem Sol., 62, 2173 (2001)

Antiferromagnetin transition metal oxides

Polarization dependence of azimuthal scans Magnetic moment directions Determination of domain population L(Q)/S(Q) ratio from polarized intensities

CIRCULAR POLARIMETRY

Page 36 Muggia 26 Sept. 2017

CYCLOIDAL MAGNETISM IN MULTIFERROICS

F. Fabrizi, H.C. Walker, L. Paolasini, F, de Bergevin, A.T. Boothroyd, D. Prabhakaran and D. McMorrow, Phys. Rev. Letters 102 (2009) 237205

- Control of magnetic domain helicity by an electric field
- Complex phase relationships between the Mn and Tb magnetic sublattices
- Complementarities with neutron magnetic scattering

ESRF

The European Synchrotron

RESONANT X-RAY SCATTERING

$$f^{RXS} \approx -\frac{1}{m} \sum_{c} \frac{E_g - E_c}{\hbar \omega_k} \cdot \frac{\langle g | \sum_{j} e^{-i\mathbf{k}' \cdot \mathbf{r}_j} \hat{\epsilon}'^* \cdot \mathbf{p}_j | c \rangle \langle c | \sum_{j} e^{i\mathbf{k} \cdot \mathbf{r}_j} \hat{\epsilon} \cdot \mathbf{p}_j | g \rangle}{E_g - E_c + \hbar \omega_k - i\Gamma_c/2}$$

- Enhancement of scattering amplitude near absorption edge
- Excitation of a inner-shell electron into an empty valence state
- Sensitivity to the local degeneration of valence-electron states
- Local symmetries of bound electrons
- Tensorial structure factor
- Forbidden lattice reflections
- Polarization effects (links with magneto-optics)
- Mixing diffraction and atomic spectroscopy

E1 = Electric dipole transitions (L=1) E2 = Electric quadrupole transitions (L=2)

RESONANT MAGNETIC X-RAY SCATTERING AMPLITUDES

- Expansion of spatial part of vector potential in spherical harmonics Y_{LM}
- Spherical symmetry SU(2) broken by an axial vector
- Cubic and centro-symmetric local symmetries

$$f^{RXS} = \sum_{L,M} F_{LM}(\hbar\omega_k) \begin{bmatrix} \hat{\epsilon}' \cdot \mathbf{Y}_{L,M}^{(e)}(\hat{\mathbf{k}}') \mathbf{Y}_{L,M}^{*(e)}(\hat{\mathbf{k}}) \cdot \hat{\epsilon} \end{bmatrix}$$
Resonant strength
Geometrical and
polarization dependence
$$F_{LM}(\hbar\omega_k) = \sum_{a,c} p_a p_a(c) \frac{E_a - E_c}{\hbar\omega_k} \frac{\Gamma_x(aMc; EL)/\Gamma_c}{x + i} \qquad x = \frac{E_a - E_c + \hbar\omega_k}{\Gamma_c/2}$$

$$\Gamma_x(aMc; EL) = 2 * \frac{(4\pi)^2}{((2L+1)!!)^2} \frac{L+1}{L} mc^2 \left[\left\langle a \left| (kr)^L Y_{LM}^*(\hat{\mathbf{r}}_j) \right| c \right\rangle \right|^2 \right]$$
Matrix elements
$$L=1 \Rightarrow Electric \ dipole \ E1$$

$$L=2 \Rightarrow Electric \ quadrupole \ E2$$

The European Synchrotron ESRF

RXS ABSORPTION EDGES: ELEMENT AND SHELL SELECTIVITY

Series	Abs.	Energy	λ	Shells	Type	Resonant
	edge	(keV)	(Å)			$\operatorname{amplitude}$
3d	$L_{2,3}$	0.4–1.0	12–30	$2p \rightarrow 3d$	<i>E1</i>	≈ 100
	K	4.5 - 9.5	1.3 - 2.7	$1s \rightarrow 4p$	E1	≈ 0.02
				$1s \rightarrow 3d$	E2	≈ 0.01
5d	$\mathbf{L}_{2,3}$	5.4 - 14	0.9 - 2.2	$2p \rightarrow 5d$	E1	\approx 1-10
$4\mathbf{f}$	$\mathbf{L}_{2,3}$	5.7 - 10.3	1.2 - 2.2	$2p \rightarrow 5d$	E1	≈ 0.10
				$2p \rightarrow 4f$	E2	≈ 0.05
	$M_{4,5}$	0.9–1.6	7.7–13.8	$2d \rightarrow 4f$	E1	$\approx 100-300$
5f	$\mathbf{L}_{2,3}$	17 - 21	0.6 - 0.7	$2p \rightarrow 6d$	E1	≈ 0.05
				$2p{\rightarrow}4f$	E2	≈ 0.01
	$M_{4,5}$	3.5 - 4.5	2.7-6	$3d \rightarrow 5f$	E1	≈ 10.0

RESONANT ENHANCEMENT STRENGTH (E1)

E1 ELECTRIC DIPOLE TRANSITIONS

- Dominant terms in RXS scattering amplitudes

$$f_{E1}^{res} = \left[\hat{\epsilon}' \cdot \hat{\epsilon} F_{E1}^{(0)} - i(\hat{\epsilon}' \times \hat{\epsilon}) \cdot \mathbf{z}_n F_{E1}^{(1)} + (\hat{\epsilon}' \cdot \mathbf{z}_n)(\hat{\epsilon} \cdot \mathbf{z}_n) F_{E1}^{(2)}\right]$$

$$F_{E1}^{(0)} = \frac{3}{16\pi} [F_{11} + F_{1-1}] \qquad \longleftarrow \quad \text{Charge scattering}$$

$$F_{E1}^{(1)} = \frac{3}{16\pi} [F_{11} - F_{1-1}] \qquad \longleftarrow \quad \text{Magnetic dipole}$$

$$F_{E1}^{(2)} = \frac{3}{16\pi} [2F_{10} - F_{11} - F_{1-1}] \leftarrow \quad \text{Electric quadrupole}$$

- Polarization dependence for the magnetic dipole:
 - Horizonthal scattering geometry
 - π-incident polarization

$$\begin{aligned}
 \varepsilon_{\pi} - \varepsilon'_{\sigma} & z_1 \cos\theta + z_3 \sin\theta \\
 \varepsilon_{\pi} - \varepsilon'_{\pi} & -z_2 \sin 2\theta
 \end{aligned}$$

z_i magnetic dipole component along u_i

ELECTRIC DIPOLE TRANSITIONS

- Dominant terms in RXS amplitudes at M-edges of Actinides:

$$f_{E1}^{res} = \left[\hat{\epsilon}' \cdot \hat{\epsilon} F_{E1}^{(0)} - i(\hat{\epsilon}' \times \hat{\epsilon}) \cdot \mathbf{z}_n F_{E1}^{(1)} + (\hat{\epsilon}' \cdot \mathbf{z}_n)(\hat{\epsilon} \cdot \mathbf{z}_n) F_{E1}^{(2)}\right]$$

$$F_{E1}^{(0)} = \frac{3}{16\pi} [F_{11} + F_{1-1}] \qquad \longleftarrow \quad \text{Charge scattering}$$

$$F_{E1}^{(1)} = \frac{3}{16\pi} [F_{11} - F_{1-1}] \qquad \longleftarrow \quad \text{Magnetic dipole}$$

$$F_{E1}^{(2)} = \frac{3}{16\pi} [2F_{10} - F_{11} - F_{1-1}] \leftarrow \quad \text{Electric quadrupole}$$

- Polarization dependence for the magnetic dipole:

- Horizonthal scattering geometry
- π-incident polarization

$$\epsilon_{\pi} - \epsilon'_{\sigma} = 0$$

 $\epsilon_{\pi} - \epsilon'_{\pi} = -z_2 \sin 2\theta$

 z_2 magnetic dipole component along u_2

Page 43 Muggia 26 Sept. 2017

ELECTRIC DIPOLE TRANSITIONS

- Dominant terms in RXS amplitudes at M-edges of Actinides:

$$f_{E1}^{res} = \left[\hat{\epsilon}' \cdot \hat{\epsilon} F_{E1}^{(0)} - i(\hat{\epsilon}' \times \hat{\epsilon}) \cdot \mathbf{z}_n F_{E1}^{(1)} + (\hat{\epsilon}' \cdot \mathbf{z}_n)(\hat{\epsilon} \cdot \mathbf{z}_n) F_{E1}^{(2)}\right]$$

$$F_{E1}^{(0)} = \frac{3}{16\pi} [F_{11} + F_{1-1}] \qquad \longleftarrow \quad Charge \ scattering$$

$$F_{E1}^{(1)} = \frac{3}{16\pi} [F_{11} - F_{1-1}] \qquad \longleftarrow \quad Magnetic \ dipole$$

$$F_{E1}^{(2)} = \frac{3}{16\pi} [2F_{10} - F_{11} - F_{1-1}] \leftarrow \quad Electric \ quadrupole$$

- Polarization dependence for the magnetic dipole:

- Horizonthal scattering geometry
- π-incident polarization

$$\epsilon_{\pi} - \epsilon'_{\sigma}$$
 $z_{3} \sin \theta$
 $\epsilon_{\pi} - \epsilon'_{\pi}$ 0

 z_3 magnetic dipole component along u_3

Page 44 Muggia 26 Sept. 2017

RMXS AT M-EDGES OF ACTINIDES

Resonant magnetic scattering in $(U_{0.5}Np_{0.5})Ru_2Si_2$ solid solution E. Lidstrom et al. Phys. Rev. B 61, 1375 (2000)

Actinide Sample:

mounted on $2x^2 \text{ mm}^2 \text{ Ge}(111)$ wafer volume 0.1 mm³, <u>30 µg Np</u> **Element selectivity and sublattice magnetization** Np and U at M_{4.5} edges

Branching ratios between M₄-M₅ edges

Electronic ground state Exchange and spin-orbit coupling

INTERPLAY BETWEEN ORBITAL AND MAGNETIC ORDERING

Interplay between orbital and magnetic ordering in KCuF₃

R. Caciuffo, et al., Phys. Rev. B 63 (2002) 174425; ibid. L. Paolasini, Phys. Rev. Letters 88 (2002) 106403.

Scientific background

- Mott-Hubbard insulator
- Model system for orbital ordering

Experimental results

- Orbital and AF order strictly related.
- OO of $d_{y^2-z^2}^2 d_{x^2-z^2}^2$ type with q_{OO} =<111>.
- ATS due to the difference in the $2p_{x(y)}$ DOS (Jahn-Teller distortion)

Violation of the extinction rules

 $f(N_1)+f(N_2)exp[i\pi h]$

CHARGE ORDERING IN NdNiO₃ THIN FILM

Direct observation of charge order in epitaxial NdNiO₃ films Staub U. et al., Phys. Rev. Letters 88 (2002) 126402.

- Prototype of bandwidth-controlled metal-insulator
- Metal/insulator transition T_{MI} =150-170K

Experimental results

- Strong enhancement of RXS at Ni K-edge on the forbidden charge reflection (105)
- ATS due to a charge dis-proportionation at Ni³⁺ site Intensity (counts/mon)

Violation of the extinction rules

 $f(N_1) \neq f(N_2)$

ESRF

The European Synchrotron

RXS AND HIGH ORDER MULTIPOLE EXPANSION

Dubovik, V.M. & Tugushev, V.V., Physics Reports 187, 145-202 (1990) L. Paolasini, F. de Bergevin C.R. Physique 9, 550 (2008) Di Matteo, J. Phys. D: Appl. Phys. 45 163001 (2012).

Product of irreducible spherical tensors X_q and F_q . The rank q depends on the order of multipole in the EM field expansion:

		J			~ <u>4</u> 4
Tensor	rank	Ŷ	\hat{P}	Type	Multipole
$F^{(0)}(E1 - E1)$	0	+	+	charge	monopole
$F^{(0)}(E2 - E2)$	0	+	+	charge	monopole
$F^{(1)}(E1 - E1)$	1	-	+	magnetic	dipole
$F^{(1)}(E2 - E2)$	1	I	$^+$	magnetic	dipole
$F^{(1+)}(E1 - E2)$	1	+	-	electric	dipole
$F^{(1-)}(E1-E2)$	1	-	-	polar toroidal	dipole
$F^{(2)}(E1 - E1)$	2	+	+	electric	quadrupole
$F^{(2)}(E2 - E2)$	2	+	+	electric	quadrupole
$F^{(2+)}(E1 - E2)$	2	+	-	axial toroidal	quadrupole
$F^{(2-)}(E1-E2)$	2	١	-	magnetic	quadrupole
$F^{(3)}(E2 - E2)$	3	-	+	magnetic	octupole
$F^{(3+)}(E1 - E2)$	3	+	-	electric	octupole
$F^{(3-)}(E1-E2)$	3	-	-	polar toroidal	octupole
$F^{(4)}(E2 - E2)$	4	+	+	electric	hexade capole

$$f_j^{RXS} = \sum (-1)^q X_{-q}^{(p)} F_q^{(p)}(j;\omega)$$

P⁻T⁻ Magneto-electric

MULTIPOLAR ORDERED STATE IN V₂O₃

Experiments:

L. Paolasini, Phys.Rev.Lett. (1999); *ibid* L. Paolasini, et. al J. Electron Spectrosc. Relat. Phenom. 120, 1 (2001)

J. Fernandez-Rodriguez, V. Scagnoli, C. Mazzoli, F. Fabrizi, S.W. Lovesey, J. A. Blanco, D.S. Sivia, K.S. Knight, F. de Bergevin, and L. Paolasini, Phys. Rev. B **81** (2010) 085107.

Theory:

S. Di Matteo, Y. Joly, A. Bombardi, L. Paolasini, F.de Bergevin, and C.R. Natoli, Phys. Rev. Lett. 91, 257402 (2003)

S. Loversey, J. Fernandez-Rodriguez, J.A. Blanco, D.S. Sivia, K.S. Knight, L. Paolasini, Phys. Rev. B 75 (2007) 014409

ESRF

The European Synchrotron

RESONANT INELASTIC X-RAY SCATTERING - RIXS

Probe elementary excitations in complex materials by measuring their energy, momentum, and polarization dependence.

- Element and electron shell specific
- Momentum and energy resolved
- Probes excitation spectrum from meV to eV
- Large resonant enhancements possible
- Small micron sized samples can be studied
- Single magnon excitations can be measured
- Experimental advances
- Aggressive improvement of energy resolution, but still high with respect neutron inelastic energies
- Hard x-rays edges limited by resonance enhancement
- Future perspectives for advances X-FEL

RESONANT INELASTIC X-RAYS SCATTERING

Theoretical framework

Ament et al., Rev. Mod. Phys. 83, 705 (2011)

Kramer-Heisenberg RIXS cross section:

$$I(\omega, \mathbf{k}, \mathbf{k}', \boldsymbol{\epsilon}, \boldsymbol{\epsilon}', \omega_{\mathbf{k}}, \omega_{\mathbf{k}'}) = r_0^2 m^2 \omega_{\mathbf{k}}^4 \sum |\mathcal{F}_{fg}(\mathbf{k}, \mathbf{k}', \boldsymbol{\epsilon}, \boldsymbol{\epsilon}', \omega_{\mathbf{k}}, \omega_{\mathbf{k}'})|^2 \delta(E_g - E_f + \hbar \omega)$$

$$\mathcal{F}_{fg}(\mathbf{k}, \mathbf{k}', \boldsymbol{\epsilon}, \boldsymbol{\epsilon}', \omega_{\mathbf{k}}, \omega_{\mathbf{k}'}) = \sum_{n} \frac{\langle f | \mathcal{D}' | n \rangle \langle n | \mathcal{D} | g \rangle}{E_{g} + \hbar \omega_{\mathbf{k}} - E_{n} - i\Gamma_{n}} \quad \text{RIXS scattering amplitude}$$
$$\mathcal{D} = \boldsymbol{\epsilon} \cdot \mathbf{D} \qquad \langle n | \mathbf{D} | g \rangle = \sum_{i=1}^{N} e^{i\mathbf{k} \cdot \mathbf{R}_{i}} \langle n | \mathbf{r} | g \rangle \qquad \text{Electric dipole operator}$$

RIXS SPECTROMETER ID20 AT ESRF

Courtesy M. Moretti

cube size 0.8 mm x 0.8 mm x 3 mm Curvature radius 1, 2, 6.5 m Energy compensation algorithm

Background removal

OBSERVATION OF SINGLE MAGNONS BY RIXS IN La₂CuO₄

The European Synchrotron

STRONGLY CORRELATED SYSTEMS

Mott-Hubbard-Heisenberg paradigm

- Mott-Hubbard insulating state arises from electron-electron interactions
- Mott-Hubbard Metal-insulator transition independent of magnetic order
- Lowest energy spin physics described by isotropic Heisenberg Hamiltonian

Strong spin-orbit coupling limit

THE J_{eff}=1/2 STATE IN SPIN-ORBIT MOTT-HUBBARD INSULATORS

Electron band formation and the opening of a Mott gap

Z-DEPENDENCE OF ENERGY SCALES

Courtesy D. McMorrow

3d Transition metals:

U>>W -> strongly correlated: λ is small

5d Transition metals:

U~W -> metal in absence of spin-orbit coupling: λ is big

U~I -> similar energy scale (1eV) plays a decisive role

Delocalisation imply covalency effects, which may also play an important role

RIXS IN 2D QUANTUM HEISENBERG ANTIFERROMAGNET Sr₂IrO₄

- Strong spin-orbit coupling for Ir^{4+} yields $J_{eff}=1/2$
- Single magnon dispersion up to 250 meV
- $J_{eff} | 1/2 \rightarrow | 3/2 \rightarrow$ excitons at high energy

RIXS at L₃ Ir edge (11.2 keV) T_N ~ 230 K, k = ($\frac{1}{2}$, $\frac{1}{2}$, 0)

EMERGENT EXCITATIONS AND QUASI-PARTICLE ZOO

ESRF

NEUTRON AND X-RAYS FOR MAGNETISM

Neutrons will remain the main probe to study magnetic structures and magnetic excitations:

- a genuine magnetic probe
- well understood scattering cross section that allows direct comparisons with models
- wide energy range covering the main region of interest
- very good (tuneable) energy resolution
- flexibility of use (providing neutron sources are still available)
- neutron polarisation is a very useful tool

X-rays have made impressive progress in the studies of magnetism:

- X-rays are more 'electronic' : they tell us a lot about electronic states
- REXS and RIXS allow to investigate samples (not all materials) in the hard X-ray range
- X-rays couple to order parameters with different symmetries
- a wide variety of 'parameters' at hand: polarisation, azimuthal angle,
- they require tiny but 'good' crystals

GENERAL CONCLUSIONS

Go for neutrons whenever:

- sample material is 'unknown' and full magnetic structure has to be determined
- energy scales are below 300 meV
- neutrons accept 'bad' crystals
- if crystals are too small, go for powders (inelastic scattering)

Go for X-rays whenever:

- magnetic structure is partially known
- sample material is a 'good' crystal (talking about scattering here)
- various order parameters coexist
- adapted edges (large enhancement) are in the hard X-ray range
- fast time-resolved (or very high-pressure) studies are foreseen

BUT

- Exploit both neutrons and X-rays and choose the best method for your own particular case
- Do not use one method if the other one is better!

Thank you for your attention!

From B. Touschek